The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021
XXIV ISPRS Congress (2021 edition)

TOWARDS FREE-VIEWPOINT VIDEO CAPTURE IN CHALLENGING
ENVIRONMENTS FOR COLLABORATIVE & IMMERSIVE ANALYSIS

Anton Frolovl, Gareth Rendlez, Adrian Kreskowskiz, Mariya Kaisheval, Bernd Froehlichz, Volker Rodehorst!

! Computer Vision in Engineering, Bauhaus-Universitit Weimar, Germany,
2 Virtual Reality and Visualization Research Group, Bauhaus-Universitit Weimar, Germany
{firstname}.{lastname} @uni-weimar.de

KEY WORDS: Free-Viewpoint Video, Outdoor Capture, Spatio-Temporal Reconstruction, 4D Model Rendering, Virtual Reality

ABSTRACT:

The ability to capture and explore complex real-world dynamic scenes is crucial for their detailed analysis. Tools which allow retro-
spective exploration of such scenes may support training of new employees or be used to evaluate industrial processes. In our work,
we share insights and practical details for end-to-end acquisition of Free-Viewpoint Videos (FVV) in challenging environments and
their potential for exploration in collaborative immersive virtual environments. Our lightweight capturing approach makes use of
commodity DSLR cameras and focuses on improving both density and accuracy of Structure-from-Motion (SfM) reconstructions
from small sets of images under difficult conditions. The integration of captured 3D models over time into a compact representation
allows for efficient visualization of detailed FVVs in an immersive multi-user virtual reality system. We demonstrate our work-
flow on a representative acquisition of a suction excavation process and outline a use-case for exploration and interaction between
collocated users and the FVV in a collaborative virtual environment.

1. INTRODUCTION

In recent years, advanced capturing and temporal integra-
tion techniques have been developed to produce high-quality
geometry-based Free-Viewpoint Videos (FVV) (Lee et al.,
2015), especially in the field of human performance cap-
ture (Prada et al., 2017) and usually under controlled lighting
conditions (Collet et al., 2015 |Guo et al., 2019)). At the same
time, the ability to capture FVVs outside of controlled condi-
tions of studios and laboratories is highly desirable. The abil-
ity to capture in more challenging conditions would facilitate
diverse applications of FVV, including collaborative and im-
mersive analysis of complex real-world processes in multi-user
virtual reality based on stereoscopic projection systems (Kulik
et al., 2011).

Such systems enable domain experts to gather in a shared phys-
ical space, which is seamlessly extended by a virtual environ-
ment, into which additional visual content can be embedded. In
addition, remote users can participate as avatars in a distributed
representation of the scene (Kreskowski et al., 2020) to review,
discuss, and explore complex recorded processes.

To enable practical acquisition of model-free FVVs for later
analysis, we explore challenges of Structure-from-Motion
(SfM) reconstruction of dynamic scenes from small sets of
images captured in uncontrolled conditions with commodity
DSLR cameras. We address the calibration approach in this par-
ticular context and argue for accurate pre-calibration of camera
intrinsics.

We also consider issues often encountered in practice during
image acquisition, such as optical defocus and sub-optimal il-
lumination of surfaces. These are especially difficult to notice
in outdoor campaigns, when human evaluation of every taken
image is difficult or infeasible. To ensure that such adverse ef-
fects do not affect our imagery, we devise practical mechanisms
for image quality control. We aim at automated identification
of these conditions so they can be prevented during acquisition.

To enable re-exploration of captured FVVs, we design a prac-
tical approach for integration of the model into a compact
representation suitable for out-of-core streaming. We demon-
strate our approach on a use case of documenting an indus-
trial process, which, once captured, can be explored by multiple
users through virtual navigation and interaction metaphors. The
chosen process involves operation of a suction excavator ap-
plied to realistic construction site materials (see Figure[I). Such
documentation can be valuable for operators controlling the
suction nozzle as evidence of non-destructive operation. Cap-
tured FVVs can also serve as training or evaluation materials.

With this paper we contribute insights and practical details
aimed at capturing, encoding and visualizing industrial pro-
cesses as FVV. Our acquisition methodology is adapted to
reflect the specifics of spatio-temporal reconstruction from a
small set of images under challenging conditions, while our ap-
proach to visualization allows immersive collaborative explor-
ation of FVVs in a multi-user virtual reality system.

2. RELATED WORK

Here, we provide a brief overview of image-based methods for
reconstruction of dynamic scenes over time and consider con-
tributions focused on large 4D model visualization.

2.1 Image-based 3D reconstruction

Reconstruction of 3D models from 2D images can be regarded
as one of the core photogrammetry (Albertz, 2009) and com-
puter vision tasks dating back to the 1970s (Ullman, 1979)), and
is still a vital research area today. Below, we distinguish primar-
ily between contributions on online and offline reconstruction
methods.

Recently, real-time reconstruction of dynamic models with cal-
ibrated Multi-view Stereo (MVS) setups has received increas-
ing attention (Dou et al., 2016 [Dou et al., 2017). While online
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Figure 1. Overview of our Free-Viewpoint Video acquisition and analysis pipeline. Time-series of synchronous images are acquired
using a lightweight capturing setup consisting of nine pre-calibrated DSLR cameras. After offline reconstruction, the individual 3D
models are integrated into a compact Truncated Signed Distance Field representation. The compact models are streamed into our
collaborative multi-user virtual environment for real-time geometry extraction. The extracted geometry is projectively textured
on-the-fly to enable a convincing exploration of the acquired dynamic processes using virtual and mixed reality interaction and
navigation techniques.

reconstruction pipelines have demonstrated impressive results,
our use case focuses on retrospective analysis of dynamic pro-
cesses, and as such affords additional processing time for recon-
struction. We therefore focus on offline reconstruction methods
for the remainder of this section.

Offline 3D reconstruction. Offline reconstruction methods
are preferred when a high degree of geometric detail is required.
In combination with SfM, MVS is a prevailing technique
for dense 3D surface reconstruction (Furukawa and Ponce,
2010). A detailed overview of SfM methods can be found in
(Schonberger and Frahm, 2016), and a general taxonomy of
MVS methods has been proposed in (Seitz et al., 2006). Rely-
ing on bundle adjustment (ITriggs et al., 1999), these techniques
allow for simultaneous estimation of both the camera paramet-
ers and 3D geometry. Due to their inherent robustness, SfM
methods are applied to large collections of possibly unordered
imagery such as community photo collections (Agarwal et al.,
2011). Practical convenience with respect to data acquisition
makes SfM reconstruction methods a popular solution to 3D
reconstruction, including reconstruction in challenging condi-
tions.

Different implementations of SfM and MVS offer general and
universal solutions to the task of 3D reconstruction, e.g. Agisoft
Metashape (Agisoft LLC), RealityCapture (Epic Games) and
Pix4Dmapper (Pix4D SA). At the same time, their application
to specific scenarios and setups may offer space for improve-
ment.

Offline 4D reconstruction for Free-Viewpoint Video. FVV
allows users to observe reconstructions of dynamic scenes from
arbitrary viewpoints. Image-based FVV methods synthesize
novel viewpoints by interpolating between captured camera
views (Germann et al., 2012). These methods are often lim-
ited to views located between camera poses, and require high
density of coverage for good results.

Geometry-based FVV methods traditionally capture dynamic
scenes with multiple RGB cameras, before extracting a 3D rep-
resentation of the scene using MVS (Kanade et al., 1997) or by
determining the volumetric occupancy (Moezzi et al., 1997) or
visual hull (Matusik et al., 2000) of foreground objects. Current
state-of-the-art FVV creation approaches capture sequences in
controlled environments covered by 30+ cameras (Collet et al.,
2015, [Morgenstern et al., 2019). To form temporally coherent
subsequences, models are non-rigidly deformed to fit adjacent
time steps. The recent Relightables approach (Guo et al., 2019)
obtains high-fidelity reflectance maps by capturing in a light
stage environment using multiple novel high-resolution depth

sensors, thereby increasing realism when reconstructed avatars
are placed in arbitrarily illuminated virtual scenes. The above
methods for FVV creation produce high-quality results, but re-
quire specialized camera configurations and lighting conditions,
meaning that they do not transfer well to outdoor environments.

Efforts have been made to create FVV in more challenging
outdoor environments such as sports stadia, where specialized
methods deal with sparse, moving camera configurations by re-
lying on pitch markings (Hilton et al., 2011) or image features
(Germann et al., 2012) for reconstruction. While embedding of
ground control points using visible markers is always possible,
we focus our efforts on non-intrusive and lean capture, which
ideally should not interfere with or modify the scene.

2.2 Efficient visualization of 4D models

Rendering high-resolution, time-varying geometry requires
careful handling of a large volume of data, as the memory foot-
print of reconstructed sequences commonly exceeds the capa-
city of RAM and video RAM. As a result, 4D rendering systems
often seek to compress data, or employ out-of-core approaches,
which stream data from disk to the CPU and GPU when re-
quired.

Various 3D geometry representations have been augmented to
allow efficient rendering of time-varying sequences. Com-
pressed point clouds can represent each time step (Hosseini
and Timmerer, 2018, |[Subramanyam et al., 2020), but are still
memory intensive due to their explicit representation of each
point’s position. Temporally-coherent triangle meshes en-
code a dynamic sequence as meshes with consistent connectiv-
ity but varying vertex positions (Shinya, 2004). Changing
mesh topology can be handled by periodically refreshing con-
nectivity and texture data (Collet et al., 2015), or by updating
mesh connectivity and texture regions incrementally when re-
quired (Prada et al., 2017).

Voxel representations such as Sparse Voxel Octrees (SVOs)
(Laine and Karras, 2010) have been able to store detailed voxel
occupancy information in a compact manner when treated as
a Directed Acyclic Graph (DAG) by leveraging voxel patterns
that appear in multiple spatial (Kampe et al., 2013) and tem-
poral (Kdmpe et al., 2016) locations. While SVOs only encode
binary occupancy of voxels, the Truncated Signed Distance
Field (TSDF) representation (Curless and Levoy, 1996) can
be used to implicitly encode surfaces in a set of voxels. Recent
work has shown that bricks of TSDF voxels can be compressed
effectively by converting them into a lower dimensional latent
space, using Principal Component Analysis (PCA) (Canelhas
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et al., 2017, Tang et al., 2018)) or by training an encoder-decoder
neural network (Tang et al., 2020).

3. ACQUISITION METHOD

Recent technological progress and cost reduction have made
high-resolution imaging sensors, such as DSLR cameras, com-
mercially available to private individuals and small enterprises.
This has allowed reconstruction of highly detailed static geo-
metries with just a single camera, with quality often comparable
to or even exceeding other more expensive technologies such as
3D laser scanning.

Static reconstruction techniques such as SfM can also be ap-
plied to the reconstruction of time-varying dynamic scenes.
This means that N > 2 separate cameras must be deployed
and each one must synchronously capture a single image per
reconstruction time step.

While both fast and accurate sensor configurations have been
deployed before in controlled studio and lab conditions, outdoor
scenes can present strong challenges to established sequential
StM workflows. In this section we address two potential issues,
which we have found to appear in practice.

First, optimal coverage of the scene is difficult to implement,
which means that frequent adaptation of camera settings and
poses can be necessary. Such changes can result in sub-optimal
imaging conditions. For example, images can be under- or over-
exposed through shadows, reflections or direct light. During
outdoor acquisitions, changing weather conditions can lead to
rapid changes in the illumination conditions. Additionally, op-
tical focus on surfaces may be lost, resulting in blurred images.
Both of these effects will lead to reconstruction artifacts, such
as holes in the model or distortions caused by a compromised
sensor alignment.

Secondly, many approaches assume that multiple images were
captured by a single sensor exhibiting constant camera intrins-
ics, such as focal length, principal point and distortion model.
Such approaches subsequently constrain the bundle adjustment
such that camera intrinsics are estimated jointly. Severe fail-
ures in sensor alignment and estimation of 3D points are then
inevitably present in reconstruction results. Even when the al-
gorithm is allowed to solve for each camera model separately, a
single registered image per sensor is rarely enough in practice
to ensure an accurate fit.

In summary, sub-optimal imaging conditions and under-
constrained variation of camera intrinsics between images of
each single time-step will act as a bias on the quality of STM
reconstructions. Therefore, it makes sense to find a way to re-
move this bias and ensure that the problem is well-constrained,
especially when the reconstruction takes place in adversarial
conditions with low density of coverage.

We improve the results of standard SfM workflow by (a) re-
inforcing constraints on the sparse bundle adjustment problem
by acquiring subpixel-accurate calibration of each individual
sensor; and (b) asserting that images are both sharp and well-
exposed through heuristic checks.

3.1 Continuous capture with commodity DSLR cameras

We demonstrate our approach on a test setup of nine Canon
EOS 100D DSLR cameras configured to capture a construc-
tion site process. To ensure synchronous operation, we have

(a) (b) (©

Figure 2. Deployment of nine DSLR cameras. Images from all
sensors are stored distributed on SD-cards and consolidated at
the acquisition control PC[(@)] via USB interface on-demand.
The shutter of all sensors is engaged synchronously (tolerance
At & 100us) with a central triggering device [(b)]implemented
using a Teensy controller. The trigger signal reaches each
individual DSLR[(¢)] through a wired hardware interface, which
is relay-decoupled from other interfaces to avoid cross-talk.

supplied the DSLRs with a centralized hardware triggering and
data transfer mechanism, which allowed us to simultaneously
acquire nine perspectives of the scene at once (see Figure [2).
In this way, we were able to achieve a stable imaging rate of 3
frames per second at 18 MP.

While considerably higher imaging rates and spatial resolutions
are attainable with modern-day scientific and studio production-
grade sensors, commodity DSLRs are relatively easy to acquire
and control without additional infrastructure. Since both the
challenges we address and the approach we describe are equally
relevant for both high-end and consumer-range sensors, we find
it sufficient to evaluate our approach using this simple setup.

3.2 Camera pre-calibration

Calibration of camera parameters is an essential first step for a
3D reconstruction pipeline. In our case, accurate camera cal-
ibration allows us to constrain the bundle adjustment and avoid
distortions in our resulting reconstructions.

Typically, calibration involves an estimation of a calibration
matrix K and a set of distortion parameters D = {d1, ...dar } on
the basis of various types of calibration objects
[Bouguet, 2015). The matrix K is used to transform a point,
expressed in the camera coordinate system, to a point in the
image plane, while D is estimated based on the chosen distor-
tion model such that the straight line preserving projection K
remains unaffected by non-linear optical distortion.

In some applications, where high accuracy of camera calibra-
tion is not required at the edges and corners of the image, only a
limited number of distortion parameters is estimated, thus sim-
plifying the fitting task. It is very often the case that only the
low-order, most influential radial distortion coefficients are es-
timated. Applications targeting higher accuracy fit more com-
plex models of optical distortion, which normally require many
high-quality images capturing the calibration object from vary-
ing perspectives.

Because of its practicality and reduced performance overhead
we have chosen an 8-parameter distortion model (3 radial and 2
tangential distortion coefficients). We evaluate the parameters
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Number of RMS reprojection  Triangulated points, Camera centers,
triangulated points  error, pix variance vector norm, m? x 10~*  variance vector norm, m? x 1074
Mean SD Mean SD
Uncalibrated 49614 0.202 37.035 8.113 39.710 24.751
Pre-calibrated | 53525 0.253 5.825 5.224 2.189 0.971

Table 1. Statistical analysis of bundle adjustment results from a single reconstruction step. Uncertainty is given as variance vector
magnitude in squared meters x 10~*. Far points (> 10m) were removed from consideration. Pre-calibrated case demonstrates clear
improvement through reduced overall uncertainties of both triangulated points and camera locations.

using the calibration pattern model proposed in
[2020), due to the versatility and robustness of its constituent
element. To achieve a reliable fit with subpixel reprojection
error we continuously capture a massive number of images by
each individual camera from highly varying perspectives.

The impact of the accurate calibration is manifested highly in
the corners of the image through improved density and spatio-
temporal stability of estimated disparities in later stages (see
section [-I). Quantitative evaluation of reconstruction uncer-
tainty (see Table [I) offers evidence on the advantages of the
pre-calibrated approach.

3.3 Image quality assessment

To attain the highest possible detail and accuracy of SfM re-
constructions, it is critically important to ensure that each in-
dividual image is sharp and well-lit. While controlled envir-
onments such as motion capture studios offer stable imaging
conditions, outdoor acquisitions often require continuous ad-
aptation of exposure time, aperture and gain, while scene dy-
namics may require changes in camera placement and orienta-
tion. For such outdoor acquisition scenarios we have devised
practical mechanisms for image quality control, which we have
implemented in software and deployed during our acquisition
campaigns.

v=0.641
v=0.303

[minsImax]

Figure 3. A well-lit image (left, blue histogram) has a stronger
presence in the preferred intensities range of the linear pixel
intensities histogram (right, green) in comparison to the
underexposed image (middle, orange histogram). This is
reflected in a higher fitness score v for a well-lit image.

First, we setup the equipment, focusing on target surfaces. We
simultaneously take a single image with all deployed cameras
and transfer all images on the acquisition control PC. Next, we
make sure that all of the following conditions are satisfied:

Ilumination conditions. To evaluate whether the image sensor
was optimally illuminated, we capture a single RAW image
with each camera and perform demosaicing. Further, we av-
erage the linear intensities from three color channels into a
single grayscale channel and build a histogram of pixel intens-
ities h; (see Figure EI) Such histogram allows us to measure
whether the captured intensities were in the preferred range
[Imin, Imaz]. The preferred range of intensities is chosen such
that the pixel sensors operate linearly. In practice, I, and
Inao are chosen to be 20% and 80% of the pixel intensity range.

(@ (®) (© (@ (O]
Figure 4. Defocus localization in sample images The region
of interestl@in the source image appears sharp (top) and
blurred (bottom). Notice that the Fourier amplitude spectrum
of a blurred image is more uniform, with its energy concentrated
in the lower frequency range. The frequency range associated
with sharp imagery [(d)]is filtered out with a smooth filter to
avoid ringing artifacts. A SLIC-aggregated defocus response
mapindicates the effective range of focus at each superpixel.

We then compute a fitness score v, which denotes the share of
pixels in the preferred range [Iimin, Imaz]. We eventually assert
that v is not less than a certain v, which guarantees that at
least a known portion of the image is captured under optimal
illumination conditions.

Defocus localization. To ensure sharpness of captured imagery,
we were able to empirically establish the following method for
defocus localization. We perform a 2D Discrete Fourier Trans-
form (DFT) on each individual image, which allows us to fil-
ter out the band of frequencies associated with highly-textured
surfaces. When such surfaces are not in focus, this band of fre-
quencies in amplitude spectrum is suppressed. In practice, for
18 MP images we have established such range to be [769, 1024].
A smooth 8-th order Butterworth filter is applied to avoid hard-
filtering-related ringing artifacts. We then perform an Inverse
DFT and extract the per-pixel defocus response map. To en-
hance human perception of the resulting defocus map, we per-
form Simple Linear Iterative Clustering (SLIC)
[2012) and aggregate a response score for each superpixel by
averaging. Using the defocus map it is possible to estimate
whether the chosen focused distance is close to optimal (see

Figure[d).
4. MODEL GENERATION

During acquisition, we capture a massive number of images,
which, at this point, are corrected for distortion and annotated
with a timestamp, sensor orientation and camera calibration
matrix. Our subsequent goal is the generation of dense geomet-
ric models, as well as preparation of data structures and repres-
entations which allow for efficient access at rendering time.

4.1 Point-cloud and mesh reconstruction

For each separate timestamp of DSLR imagery we now trian-
gulate a dense point cloud. For routine tasks of StM and MVS
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we use commercial softwareﬂ We force sensor poses and calib-
rations from (3.2) to be fixed during reconstruction, separately
for each individual camera. Through the use of accurate calib-
ration for each sensor we are able to visibly improve the results

(see Figure[5).

Figure 5. Unfiltered dense point cloud for calibration-free (left)
and pre-calibrated case (right).

We produce textured triangle meshes in a dense multi-view geo-
metry reconstruction step. While our setup allows for resolution
of up to 90 million triangles, we choose to further optimize and
decimate the initially over-tessellated meshes to a more prac-
tical resolution of 1 million triangles per 3D model.

4.2 Free-Viewpoint Video encoding

To encode geometry in a compact form appropriate for stream-
ing, the mesh representing each time frame of the spatio-
temporal recording is transformed into a Sparse Brick Octree
(SBO), where bricks consist of b® voxels containing TSDF val-
ues. This structure, shown in Figure |6| will be referred to as
the TSDF-SBO. TSDF voxels implicitly encode geometry by
storing a signed distance to the nearest surface, where the sign
determines whether the voxel is inside or outside the surface.
Signed distances with absolute value above threshold dy,qq are
truncated, leaving a sparse set of voxels, and therefore a sparse
set of bricks, which encode each time step. This sparse en-
coding means that we benefit from the compact nature of both
sparse octree structures and the TSDF representation when stor-
ing and streaming spatio-temporal sequences, while the use of
a spatial hierarchy enables rendering at varying Level-of-Detail
(LOD).

To begin building the data structure, a bounding volume is com-
puted that encompasses all meshes in the time series. The max-
imum LOD defines the depth of the TSDF-SBOs.

Each mesh is then converted to a TSDF-SBO. Triangles are
processed in parallel to find voxels that lie within dy,q of the
mesh. Signed distances are calculated for each voxel, signed
according to the normal vector of the nearest triangle. Voxels
are then inserted into an octree. Octree nodes are added at all

! Agisoft Metashape Pro 1.6
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Figure 6. Simplified example of a TSDF surface encoding in 2D.
A surface, dashed, is encoded in sparse bricks of TSDF voxels
which form a level-of-detail hierarchy [(b)}

tree levels where occupied voxels are present, and TSDF data
bricks are associated with octree nodes. To encode octree struc-
ture, all nodes carry a child occupancy mask and a pointer to
their first child. Children are stored sequentially. Since TSDF-
SBOs from different frames are not interdependent, they can be
processed independently in an out-of-core manner.

In addition to generating TSDF-SBOs for each time step, we
calculate a global octree structure, which contains all nodes that
are occupied throughout the entire sequence. This structure al-
lows TSDF bricks to be assigned to a spatial location, via an
index that corresponds to a node in the global octree structure.

To obtain color and depth images for the projective texturing
stage described in Section @ we render each reconstructed
mesh from the perspective of the capturing cameras and store
the images in a lightweight format. Color textures are com-
pressed using the DXTI}"| standard. To avoid strong compres-
sion artifacts in the depth textures, we render and store lower
resolution depth data without further compression.

5. IMMERSIVE EXPLORATION OF 4D PROCESSES

To support interactive frame rates, we stream texture and im-
plicit geometry data to multiple rendering contexts, extracting
geometry on the fly. Our system is implemented in C++, and
uses the OpenGL Shading Language (GLSL) and graphics APIL.

5.1 Out-of-core streaming

Large amounts of data are needed to render an entire 4D se-
quence. In our implementation, each frame requires around
35MB of TSDF and image data, therefore requiring 6GB per
minute of FVV. CPU memory constraints mean that loading
longer sequences into RAM is often impractical. We there-
fore stream geometry and textures from SSD during playback.
While out-of-core streaming incurs extra costs during run time
when compared with ‘up-front’ loading of the sequence, these
costs can be distributed sensibly to avoid negative impacts on
the viewing experience. Furthermore, streaming out-of-core en-
ables viewing of sequences of arbitrary lengths.

The applied out-of-core loading strategy assumes sequential
playback of frames in either a forward or backward direction.
A loader thread places all frames in a priority queue, ordered
depending on the playback direction and the last frame reques-
ted by the rendering thread. Frames that are more likely to be
requested next are assigned a higher priority. The loader thread
ensures that TSDF-SBO structures for the first n frames in the
queue are loaded into main memory when needed.

2 khronos.org/opengl/wiki/S3_Texture_Compression
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Rendering geometry from our TSDF-SBO format depends on
a triangle extraction stage, described in Section 5.2] The ex-
traction stage requires TSDF data to form the surface topology,
as well as a spatial location linking each TSDF brick to a node
in the global octree structure. TSDF bricks and location IDs
are extracted from the TSDF-SBO that encodes each frame us-
ing Algorithm([T] This process is performed ahead-of-time on a
thread parallel to the rendering thread.

Color and depth textures are also loaded asynchronously to re-
duce CPU to GPU transfer times.

Algorithm 1: Selection of TSDF bricks and brick location
IDs from TSDF-SBO and global SVO structure

input : Desired level-of-detail [
input : TSDF-SBO structure 7"
input : Global SVO structure G
output: List of TSDF bricks B
output: List of brick location IDs L

// Recursive call traverses G and 7 in tandem
Function processNode (node, depth, global_ID):
if depth < [ then

for i = O to 7 : do in parallel

if node.hasChild (i) then

child <— node.getChild(4);
child_ID + G.getChildID(global_ID,%);
processNode (child, depth +1, child_ID);

end
else
B.append(node.getTSDFBrick());
L.append (global_ID)

end
return;

node <+ T'.getRootNode();
depth < 0;
global_ID «+ 0;

processNode (node, depth, global_ID);

5.2 Geometry extraction

Triangles are extracted from TSDF data by finding the zero-
value iso-surface using the trivially parallelizable Marching
Cubes algorithm (Lorensen and Cline, 1987). Since TSDF data
is uploaded to the GPU in non-overlapping bricks, vertex val-
ues of some cubes must be sampled from multiple TSDF bricks.
Sampling the TSDF data at arbitrary points is possible by tra-
versing the global octree structure that resides on the GPU.

Approximations of smooth per-vertex normals are derived dur-
ing Marching Cubes extraction by averaging normal directions
of adjoining triangles within a cube.

5.3 Visualization

Vertex positions and normals computed in the geometry extrac-
tion phase serve as input for a forward rendering pass. The
geometry is textured in a projective manner
based on intrinsic and extrinsic camera parameters estim-
ated during the 3D reconstruction. Projective texturing, shown
in Figure [7} avoids explicit association of textures with geo-
metry, which would undermine the compact nature of TSDF-
based representation. Color information is sampled per raster-
ized fragment from the color textures. For each fragment we
sample the texture that corresponds to the camera aligning best
with its surface normal. The DXT1-compressed color textures
can be sampled directly in the fragment shading stage, since the
decompression is performed in hardware.

To correctly resolve projective occlusions, pre-rendered depth
maps are consulted at runtime. If the depth values of the best

Figure 7. Projective texturing of a 3D model. The contribution of
pre-rendered textures is based on the cosine similarity between
surface normals and inverse projective camera directions.
Different colors|[(a)]indicate textures from different camera
perspectives being sampled to determine the final color@

aligned camera indicate occlusion of current scene parts, we
refer to the next best camera perspective.

5.4 Experimental evaluation

To provide a concise summary of our system’s performance, we
capture a representative FVV with the aim of supporting teach-
ing scenarios for prospective excavator operators. The FVV can
also serve as process documentation, which can be immersively
explored (see Figure [8) to investigate whether the excavation
was executed according to the required standards.

Figure 8. Users working together in front of a multi-user virtual
reality display. Real and virtual tools such as flashlights support
the collaborative and immersive exploration of the FVVs.

Dataset. The FVV created to serve as a test dataset focuses
on a suction excavator clearing a heap of gravel (see Figure [J).
We pre-calibrate the cameras according to section [3.2] and re-
construct a 60 second FVV, consisting of 180 time steps. We
render high-resolution color textures (2592 x 1728 pix per tex-
ture), as well as low-resolution depth textures (648 x 432 pix
per texture) from the camera perspectives. For each time step,
the geometry data, encoded as a TSDF-SBO, accounts for ap-
proximately 8.2 MB, while the color and depth textures account
for 30.3 MB.

Rendering system. We render the FVV by integrating our
visualization system into a multi-user virtual reality engine
(Schneegans et al., 2014). When coupled with a multi-user pro-
jection system (Kulik et al., 2011)), this allows up to six users to
receive a unique stereoscopic perspective into the virtual world.
Each user’s perspective is rendered with a stereoscopic resolu-
tion of 4096 x 2160 pixels. Perspectives are rendered by a single
NVIDIA RTX Quadro 6000 GPU per user. The projection PC
was equipped with an Intel Xeon E5-2687W v4 running at 3.0
GHz.
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Figure 9. Representative frames from our gravel excavation
FVV. We refer the reader to our supplementary video material
for a demonstration of interaction between users and the FVV in
collaborative multi-user virtual reality.

| No Textures 1 Texture 5 Textures 9 Textures
Tr 1.6 ms 7.4 ms 10.5 ms 13.3 ms
Ty 4.1 ms 13.0 ms 23.6 ms 35.4 ms

Table 2. Average render frame (7'r) and upload frame (71v/)
times for FVV rendered at stereoscopic 4096 x 2160 pix

Rendering performance and scalability. To evaluate the
rendering performance, we profiled our application using a
single GPU. We render a screen-filling view of our FVV, and
measure the average frame time during the sequence for both
upload and pure render frames (see Table @) During upload
frames, extra overhead is incurred from geometry extraction
and texture copy operations. We estimate the cost of projective
texturing by omitting a varying number of original camera rep-
resentations and recording changes in the average frame time.

We observe that frame times increase sub-linearly when pro-
jective texturing is active. Nevertheless, it is apparent that
when nine camera perspectives are used for texturing, our im-
plementation is limited to a frame rate of around 28 Hz. To
enable projective texturing from significantly larger numbers
of cameras without losing interactivity at high display resolu-
tions, video encoding could be explored for efficient streaming
of color maps. It would also be possible to identify changing
texture regions during pre-processing, to allow partial texture
update at each frame. Alternatively, an implicit coupling of ex-
tracted geometry to a compact texture atlas could reduce texture
upload overhead, as demonstrated in real-time model compres-
sion schemes (Tang et al., 2020). However, the challenge of
creating texture maps that can be consistently applied across
geometric levels-of-detail remains.

6. CONCLUSIONS & FUTURE WORK

In this work, we have presented an end-to-end system for
capture and immersive collaborative analysis of FVV. We
have described our practical acquisition and 3D reconstruction
pipeline, which allows to capture dynamic scenes with high spa-
tial detail even in challenging outdoor conditions. To assess the
suitability of our FVV representation for interactive use, such
as training and process documentation, we have evaluated both
performance and scalability of our real-time immersive virtual
reality environment. In our supplementary videcﬂ we provide
an example of a verification scenario for correct operation of a
construction site process. This verification is achieved interact-
ively through collaborative analysis of captured FVVs.

Although interactive rendering frame-rates were achieved for
high-resolution displays in our multi-user system, further
output-sensitive rendering techniques could be developed to en-
able real-time texture handling for many more capturing per-
spectives.

3 https://youtu.be/9XVIGt1wBisd

Temporal coherence can be exploited to improve both the initial
reconstructions and the efficiency of FVV encoding (Kampe et
al., 2016, |[Prada et al., 2017). Through spatio-temporal model-
ing of motion and deformation of general objects, observations
can be propagated between the temporal steps of the acquisi-
tion, resulting in more complete and coherent models. Com-
bining inter-frame encoding techniques based on temporal co-
herence with our system would lead to the ability to represent
larger, temporally denser dynamic real-world scenes.
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